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Higher-order force gradient symplectic algorithms

Siu A. Chin and Donald W. Kidwell*
Center for Theoretical Physics, Department of Physics, Texas A&M University, College Station, Texas 77843

~Received 30 June 2000!

We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of
force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms
that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm.
We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated
with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric
Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104,
and 105 better.

PACS number~s!: 02.60.Cb, 95.10.Ce
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I. INTRODUCTION

Symplectic algorithms@1,2# for solving classical dynami-
cal problems exactly conserve all Poincare´ invariants. For
periodic orbits, the errors in energy conservation
bounded and periodic. This is in sharp contrast to Run
Kutta type algorithms, whose energy error increases line
with integration time, even for periodic orbits@3,4#. Thus,
symplectic algorithms are ideal for long time integration
equations of motion in problems of astrophysical interest@5#.
For long time integrations, higher order algorithms are de
able because they permit the use of larger time steps. S
plectic algorithms are also advantageous in that higher o
algorithms can be systematically generated from any l
even order algorithm@6–8#. In this work, we will show that
higher order algorithms generated by a fourth order fo
gradient symplectic algorithm@9#, have energy errors that ar
several orders of magnitude smaller than existing symple
algorithms of the same order. For completeness, we
briefly summarize the operator derivation of symplectic
gorithms and their higher order construction in Sec. II. Wh
the materials in this section are not new, we believe that
have restated Creutz’ and Gockach’s@6# triplet construction
of higher order algorithms in its most transparent setting
Secs. III and IV we recall force gradient algorithms and d
cuss two distinct ways of gauging the errors of an algorit
when solving the Kepler problem. We present our results
conclusions in Secs. V and VI.

II. OPERATOR FACTORIZATION AND HIGHER-ORDER
CONSTRUCTIONS

After a tortuous start@10,11#, symplectic algorithms can
be derived most simply on the basis of operator decomp
tion or factorization. For any dynamical variableW(qi ,pi),
its time evolution is given by the Poisson bracket

d

dt
W~qi ,pi !5$W,H%[(

i
S ]W

]qi

]H

]pi
2

]W

]pi

]H

]qi
D . ~1!

*Present address: Candescent Technologies, 6580 Via Del
San Jose, CA 95119.
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If the Hamiltonian is of the form

H~p,q!5
1

2 (
i

pi
21V~$qi%!, ~2!

the evolution equation~1! can be written as an operato
equation

dW

dt
5(

i
S pi

]

]qi
1Fi

]

]pi
DW, ~3!

with formal solution

W~ t !5et(T1V)W~0!, ~4!

whereT andV are first order differential operators defined b

T[(
i

pi

]

]qi
, V[(

i
Fi

]

]pi
. ~5!

Their exponentiations eeT and eeV are displacement operator
which displaceqi andpi forward in time via

qi→qi1epi and pi→pi1eFi . ~6!

Thus, if ee(T1V) can be factorized into products of the di
placement operatorseeT and eeV, each such factorization
gives rise to an algorithm for evolving the system forward
time. For example, the second order factorization

T2~e![e(1/2)eTeeVe(1/2)eT

5exp@e~T1V!1e3C1O~e5!•••#, ~7!

corresponds to the second order algorithm

q15q01
1

2
ep0 ,

p15p01eF~q1!,

q25q11
1

2
ep1 , ~8!ro,
8746 ©2000 The American Physical Society
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whereq0 , p0 andq2 , p1 are the initial and final states of th
algorithm, respectively. This second order symplectic al
rithm only requires one evaluation of the force.

The bilaterally symmetric form ofT2(e) automatically
guarantees that it is time reversible,

T2~2e!T2~e!51, ~9!

and implies that ln(T2) can only be an odd function ofe, as
indicated in Eq.~7!. The explicit form of the operatorC is
not needed for our present discussion.

Consider now the symmetric triple product

T2~d!T2~2sd!T2~d!

5exp@~22s!d~T1V!1~22s3!d3C1O~d5!1•••#.

~10!

This algorithm evolves the system forward for timed, back-
ward for timesd and forward again for timed. Since it is
manifestly time-reversible, its error terms must be odd po
ers ofd only. Morever, its leading first and third order term
can only be the sum of the first and third order terms of e
constituent algorithm as indicated. This is because nona
tive terms must come from commutators of operators and
lowest order nonvanishing commutator has to have two
order terms and one third order term, which is fifth ord
The form of Eq.~10! naturally suggests that the third ord
error term can be made to vanish by choosing

s521/3. ~11!

Thus if we now rescaled back to the standard step size b
setting e5(22s)d, the resulting triplet product would b
correct to fourth order,

T4[T2S e

22sDT2S 2se

22sDT2S e

22sD
5exp@e~T1V!1O~e5!1•••#. ~12!

Expanding out theT2’s gives the explicit form

T 4[ea1eTeb1eVea2eTeb2eVea2eTeb1eVea1eT, ~13!

where, by inspection

a15
1

2

1

22s
, a252

1

2

s21

22s
,

b15
1

22s
, and b252

s

22s
. ~14!

This fourth order symplectic algorithm was apparently o
tained by Forest in 1987. However, its original derivati
was very complicated and was not published with Ruth@11#
until 1990. During this period many groups, including Ca
postrini and Rossi@12# in 1990, Candy and Rozmous@13# in
1991, independently published the same algorithm. Our
cussion followed the earliest published derivation of this
gorithm by Creutz and Gocksch@6# in 1989. After they were
informed of this algorithm by Campostrini, they provided t
triplet construction and generalized it to higher order. T
-

-

h
i-
e

st
.

-

-

s-
-

e

triplet construction was also independently published by
zuki @7# and Yoshida@8# in 1990.

Higher order algorithms can be obtained by repeating
construction. Starting with anynth order symmetric algo-
rithm

Tn~e!5exp@e~T1V!1e (n11)D1•••#, ~15!

the triplet product

Tn~d!Tn~2sd!Tn~d!

5exp@~22s!d~T1V!1~22sn11!dn11D

1O~dn13!1•••#, ~16!

will be of order (n12) if we choose

s521/(n11) ~17!

and renormalized5e/(22s) as before.

III. FORCE GRADIENT ALGORITHMS

The method of operator factorization can be applied
many different classes of evolution equations. However,
triplet concatenations with a negative time step are a spe
construction with more limited applicability. For exampl
one cannot use it to derive similar Diffusion Monte Carlo
finite temperature path integral algorithms, because one
not simulate diffusion backward in time nor sample config
rations with negative temperatures. The triplet construct
is a special example of Suzuki’s@14# general proof that,
beyond second order, it is impossible to factorizeee(T1V)

only into products ofeeT’s and eeV’s without introducing
negative time steps. For symplectic algorithms this me
that one can never develop a purely positive time step fou
order algorithm by evaluating only the force. For many ye
the Forest-Ruth~FR! algorithm was the only known fourth
order symplectic algorithm. Recently, a deeper understa
ing of the operator factorization process has yielded th
new symplectic algorithms@9# all with purely positive time
steps. These new algorithms circumvented Suzuki’s no
theorem by evaluating the force and its gradient. This co
sponds to factorizingee(T1V) in terms of operatorsT, V, and
the commutator@V,@T,V##. The latter corresponds to

@V,@T,V##52F j

]Fi

]qj

]

]pi
5¹ i uFu2

]

]pi
, ~18!

which is the gradient of the squared magnitude of the for
Of the three algorithms derived by Chin@9#, algorithm C is
particularly outstanding and corresponds to the factoriza

ee(T1V)5ee(1/6)Tee(3/8)Vee(1/3)Tee(1/4)Ṽee(1/3)Tee(3/8)Vee(1/6)T

1O~e5!, ~19!

where

Ṽ5V1
1

48
e2@V,@T,V##. ~20!

The algorithm itself can be read off directly as
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q15q01
1

6
ep0 ,

p15p01
3

8
eF~q1!,

q25q11
1

3
ep1 ,

p25p11
1

4
eFF~q2!1

1

48
e2¹uF~q2!u2G , ~21!

q35q21
1

3
ep2 ,

p35p21
3

8
eF~q3!,

q45q31
1

6
ep3 .

In Ref. @9# it was shown that the maximum energy err
for this algorithm, when used to solve Kepler’s problem,
smaller than that of the FR algorithm by a factor of 80.
the moment there is no general method for construc
higher order algorithms with only positive time steps. It
not even known whether a positive time step sixth or
algorithm exists. Thus, beyond fourth order the triplet co
truction is still the only systematic way of generating high
order algorithms. In this work we show that intrinsic err
functions associated with higher order algorithms genera
from Chin’s algorithm C are far smaller than those genera
from the FR algorithm.

IV. THE ENERGY AND THE LRL VECTOR

We gauge the numerical effectiveness of each algori
by solving the two-dimensional Kepler problem

d2q

dt2
52

q

q3 , ~22!

with initial conditionsq05(10,0) andp05(0,1/10). The re-
sulting highly eccentric (e50.9) orbit provides a nontrivia
testing ground for trajectory integration.

A symmetricnth order symplectic algorithm evolves th
system forward in time with Hamiltonian

H~p,q!5H0~p,q!1enHn~p,q!1O~en12!, ~23!

which deviates from the exact HamiltonianH0(p,q)5 1
2 p2

21/uqu by an error termenHn(p,q) as indicated. To gauge
the intrinsic merit of each algorithm we compare their ste
size independent error coefficientHn(p,q). This can be ex-
tracted numerically as follows. Let us start the system w
total energy E05H0@p(0),q(0)#. Since the Hamiltonian
~23! is conserved by the algorithm, we have

E05H0@p~ t !,q~ t !#1enHn~p~ t !,q~ t !!1O~en12!.
~24!
t
g

r
-
r

d
d

m

-

h

Denoting E(t)[H0@p(t),q(t)# and Hn(t)5Hn@p(t),q(t)#,
we therefore have

Hn~ t !52 lim
e→0

1

en @E~ t !2E0#. ~25!

Energy conservation does not directly measure how w
the orbit is determined. When the time step is not too sm
a very noticeable error is that the orbit precesses. One
but it is tedious, directly monitor this orbital precession@4#.
It is more expedient to follow the rotation of the Laplac
Runge-Lenz~LRL! vector

A5p3L2 r̂ . ~26!

When the orbit is exact the LRL vector is constant, pointi
along the semimajor axis of the orbit. When the orbit p
cesses the LRL vector rotates correspondingly.

For annth order algorithm

dA

dt
5en(

i
S ]A

]qi

]Hn

]pi
2

]A

]pi

]Hn

]qi
D . ~27!

Thus, the rate of change of each component of the L
vector is of orderen. The components themselves, which a
time integrals of the above modulo a constant term, m
also be of orderen. Let the LRL vector initially be of length
A0 and lie along thex axis, then we have

Ax~ t !5A01enAnx~ t !1O~en12!, ~28!

Ay~ t !5enAny~ t !1O~en12!. ~29!

Since the square of the LRL vector is related to the ene
by

A252L2E11, ~30!

the longitudinal deviation coefficientAnx(t) is related to the
energy error coefficient by

Anx~ t !5
1

en

L2

A0
@E~ t !2E0#52

L2

A0
Hn~ t !, ~31!

which gives no new information. The perpendicular dev
tion coefficientAny(t) is best measured in terms of the rot
tion angle

u~ t !5tan21FAy~ t !

Ax~ t !G5enFAny~ t !

A0
G1•••. ~32!

To compare algorithms we again extract and compare t
rotation error coefficient functionun(t)5Any(t)/A0 via

un~ t !5 lim
e→0

1

en u~ t !. ~33!

Since this rotational angle is related to some integral of
energy error function, it is a better measure of the ove
error of the algorithm.
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V. RESULTS OF COMPARING HIGHER-ORDER
ALGORITHMS

By use of the triplet construction, we generated 6th, 8
10th, and 12th order algorithms from both the Forest-R
and Chin’s C algorithm. We computed the fractional ene
deviation, which is just the negative of the energy error
efficient normalized by the initial energy

lim
e→0

1

en FE~ t !

E0
21G52

Hn~ t !

E0
. ~34!

Smaller and smaller time stepse are used until the extracte
coefficient function is stablized independent of the time s
size. This typically occurs in the neighborhood ofe
5P/5000, whereP is the period of the orbit.

Figure 1 compares the~negative! normalized error coeffi-
cient functions for the fourth order Runge-Kutta, Fore
Ruth, and Chin’s C algorithms over one period of the orb
The error function for the two symplectic algorithms are su
stantial only near mid period when the particle is at its cl
est approach to the attractive center. For symplectic a
rithms energy is conserved over one period, or
nonconservation is periodic. Its average energy error
bounded and constant as a function of time. In contrast,
fourth order Runge-Kutta energy error function is an ir
versible, steplike function over one period. Each succes
period will increase the error by the same amount resul
in a linearly rising, staircaselike error function in time. A
noted earlier, the maximum error in Chin’s algorithm C
smaller than that of the FR algorithm by a factor of 8
However, this error height comparison at one point is
meaningful. It is better to compare the energy error avera
over one period. This would require the integral of the e
ergy error function. On this basis algorithm C will be bett

FIG. 1. The normalized energy deviation of a particle in
Keplerian orbit, which measures the step-size independent en
error coefficient2H4@p(t),q(t)#/E0. P is the period of the ellipti-
cal orbit ande is the time step size. RK4, FR, and C denote resu
for the fourth order Runge-Kutta, Forest-Ruth, and Chin’s C al
rithm, respectively. The maximum deviations for algorithm FR a
C are 21 and 0.27, respectively.
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still. While the energy error integral can be done, the sa
goal can be achieved by monitoring the rotation of the LR
vector.

Figure 2 shows the corresponding error coefficient fu
tions of the rotational angle of the LRL vector. After eac
period, the algorithms rotate the LRL vector by a defin
amount. The error coefficient provides an intrinsic, step-s
independent way of comparing this rotation. In Fig. 2 t
rotated angle produced by algorithm C is too small to
visible when plotted on the same scale as the other a
rithms. The inset gives an enlargement of the details. T
rotational angle of the LRL vector appears to be related
some integral of energy error function. Although we ha
not been able to demonstrate this analytically, numerical
tegration of the energy error function does give a funct
similiar in shape to the angle coefficient function, having t
same numbers of maxima and minima. For the Runge-Ku
Forest-Ruth, and Chin’s C fourth order algorithms, the m
nitudes of this rotation coefficient after one period are 2.6
10.860, and 0.004, respectively. On this basis, algorithm C
better than FR by a factor of'3000. When the orbit is
integrated over many periods the rotational angle from sy
plectic algorithms increases linearly in a staircaselike man
with time. In contrast, the rotational angle of the Rung
Kutta algorithm shows a quadratic increase over long tim
such as a few thousand periods. This result is easy to un
stand if the rotational angle is related to some integral of
energy error. This quadratic increase in the rotation angle
the LRL vector clearly mirrors the quadratic increase
phase error of the Runge-Kutta algorithm, as discussed
Gladman, Duncan, and Candy@4#.

Running on a Hewlett Packard 710 workstation usi
HP’s FORTRAN 9000 compiler, the CPU time required fo
integrating 100 periods, with 5000 executions of the alg
rithm per period, are 4.52, 4.94, and 4.48 sec, respectiv
for algorithms FR, C, and RK4. Using the FR timet
54.52 sec as a unit of comparison, the respective CPU t
for FR, C, and RK4 aret, 1.09t, and 0.99t. As expected, the

gy

s
-

FIG. 2. The step-size independent error coefficient of the ro
tion angle of the Laplace-Runge-Lenz vector for fourth order al
rithms. The LRL vector rotates substantial only when the particle
near mid period, closest to the attractive center. The inset ma
visible the fine structure produced by algorithm C.
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force gradient algorithm C is slower than the standard
algorithm, but only on the order of 10%. For this proble
where the force is rather simple, despite the fact that the
algorithm only evalutates the force three times, it is not fas
than RK4.

Figures 3 and 4 show the results when both the For
Ruth and Chin’s C algorithms are iterated to sixth order
the triplet product construction. Inserts in both detail alg
rithm C’s intricate structure. As an added comparison
also included results for Yoshida’s@8# sixth order algorithm
A, which is a product of seven second order algorithms~8!,
some with negative time steps. For Yoshida’s algorith
Forest-Ruth and Chin’s C algorithm in sixth order, the ma
nitudes of the rotation coefficients after one period are 11
335.1, and 0.1156, respectively. Yoshida’s algorithm is
factor of 30 better than FR, but algorithm C is a factor

FIG. 3. The normalized energy deviation for sixth order alg
rithms. RF and C denote sixth order algorithms generated b
triplet product of corresponding fourth algorithms in Fig. 1. T
inset makes visible the energy deviation of algorithm C, which
not visible in the bigger graph. The maximum deviations for alg
rithms FR, Y, and C are 513, 13.6, and 0.74, respectively.

FIG. 4. The step-size independent error coefficient of the ro
tion angle of the LRL vector for sixth order algorithms as describ
in Fig. 3. The inset makes visible the minute rotation coeffici
produced by algorithm C.
R
,
R
r

t-
y
-
e

,
-
4,
a
f

3000 better. Note that if the energy error function is rela
to the differential of the the angle error function, the zeros
the former would correspond to the extrema of the latter. T
four zero crossings of algorithm C’s energy error functi
are clearly reflected in the two maxima and two minima
the corresponding angle error function. The CPU time
quired for algorithms FR, C, and Y to integrate 100 perio
are 2.99t, 3.27t, and 2.72t, respectively. Since the sixth
order FR and C algorithms are just products of three fou
order algorithms, the required time simply triples. Yoshida
6th order algorithm is a bit faster because it uses fewer
erators.

Figures 5 and 6 give results for the eighth order itera
algorithms based on the Forest-Ruth and Chin’s C algorith
The magnitudes of the angle error coefficients are 1.3
3104 and 0.4532, respectively, giving a ratio of approx
mately 33104. Algorithm C retains its characteristic shap

-
a

s
-

-
d
t

FIG. 5. The normalized energy deviations for eighth order al
rithms, as generated by a triplet product of sixth order algorit
described in Fig. 3. The inset makes visible the minute energy
viation of algorithm C.

FIG. 6. The step-size independent error coefficient of the ro
tion angle of the LRL vector for eighth order algorithms as d
scribed in Fig. 5. In this order, the algorithm C based algorith
begins to rotate in the same sense as the FR base algorithm.
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in both the energy and the angle error function. The ti
required for algorithm FR and C are now 8.94t and 9.77t,
respectively, exactly as expected. Algorithm C remains 1
slower. This pattern is very predictable and holds for
higher order algorithms. The factors are 27 and 81, resp
tively, for 10th and 12th order algorithms.

Figures 7 and 8 give the corresponding results for
iterated tenth order algorithms. Here the intricate structur
the C algorithm is beginning to be washed out. At this hi
order, quadruple numeric precision is necessary to ext
these coefficient functions smoothly. The magnitudes of
angle error coefficients are now 7.1413105 and 17.89 re-
spectively, giving a ratio of 43104. Figures 9 and 10 give
similar results for the 12th order algorithms. At this point
structures in the C algorithm are gone. The magnitudes of
angle error coefficients are now 4.4733107 and 427.5, re-
spectively, giving a ratio of 1.053105.

FIG. 7. The normalized energy deviations for tenth order al
rithms, as generated by a triplet product of eighth order algorit
described in Fig. 5. The inset shows that the characteristic osc
tions of algorithm C are beginning to disappear.

FIG. 8. The step-size independent error coefficient of the ro
tion angle of the LRL vector for tenth order algorithms as describ
in Fig. 7. The inset shows that the error coefficient of algorithm
begins to look similar to that of the FR algorithm.
e

ll
c-

e
in

ct
e

l
e

The iteration of algorithms A and B of Chin@9# also pro-
duced results that are better than FR based algorithms. H
ever, we do not detail their results here because they ar
least one or two orders of magnitude inferior to algorithm

VI. CONCLUSIONS

In this work we have shown that higher order force g
dient symplectic algorithms appear to be superior to nong
dient symplectic alogorithms as measured by eneregy c
servation and the rotation of the LRL vector. While it h
been shown earlier that fourth order force gradient al
rithms have smaller energy error coefficients@9#, it was not
known that this advantage would mulitply dramatically wh
algorithms are iterated to higher orders. The conclusion
one should draw may not be that force gradient algorith
are better, but that higher order nongradient algorithms
far from optimal. Second, we suggested that the rotation

-

a-

-
d

FIG. 9. The normalized energy deviations for 12th order alg
rithms, as generated by a triplet product of tenth order algorit
described in Fig. 7. The inset shows that there is no longer
distinctive structure produced by algorithm C.

FIG. 10. The step-size independent error coefficient of the ro
tion angle of the LRL vector for 12th order algorithms as describ
in Fig. 9. The inset shows that both algorithms have converged
similar steplike error function.
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the LRL vector gives an intergrated measure of an al
rithm’s merit when tested on the Kepler problem.

The high accuracy of this class of algorithms seem
ideal for long time integration of few-body problems, such
that of the solar system@5#. For such few-body problems, th
evaluation of the force gradient is not excessively difficult
would be useful to examine the merit of this class of alg
rithms in more physical applications. The distinct advanta
uncovered in this work, that it is better to iterate a fou
-

d
s

t
-
e

order algorithm with all positive time steps, gives furth
impetus to search for an all positive time step sixth ord
symplectic algorithm.
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